ILNumerics Ultimate VS

MachineLearningkMeansClust Method

ILNumerics Ultimate VS Documentation
ILNumerics - Technical Application Development
k-means clustering: finds clusters in data matrix X.

[ILNumerics Machine Learning Toolbox]

Namespace:  ILNumerics.Toolboxes
Assembly:  ILNumerics.Toolboxes.MachineLearning (in ILNumerics.Toolboxes.MachineLearning.dll) Version: 5.5.0.0 (5.5.7503.3146)
Syntax

public static RetArray<long> kMeansClust(
	InArray<double> X,
	BaseArray k,
	int maxIterations = 10000,
	bool centerInitRandom = true,
	OutArray<double> outCenters = null
)

Parameters

X
Type: ILNumericsInArrayDouble
Data matrix, data points are given as columns.
k
Type: ILNumericsBaseArray
Initial number of clusters.
maxIterations (Optional)
Type: SystemInt32
[Optional] Maximum number of iterations, the computation will exit after that many iterations, default: 10.000.
centerInitRandom (Optional)
Type: SystemBoolean
[Optional] false: pick the first k data points as initial centers, true: pick random datapoints (default).
outCenters (Optional)
Type: ILNumericsOutArrayDouble
[Input/Output/Optional] If not null on entry, outCenters will contain the centers of the clusters found, default: null.

Return Value

Type: RetArrayInt64
Vector of length n with indices of the clusters which were assigned to each datapoint.
Remarks

If outCenters is given not null on input, the algorithm returns the computed centers in that parameter. A matrix may be given on input, in order to give a hint of the initial center positions. This may help to find correct cluster centers - even if the initial hint is not exact. In order to do so, the matrix given must be of the correct size (X.D[0] by k) and centerInitRandom must be set to false.

[ILNumerics Machine Learning Toolbox]

See Also

Reference