ILNumerics - Technical Application Development
Assembly: ILNumerics.Toolboxes.MachineLearning (in ILNumerics.Toolboxes.MachineLearning.dll) Version: 5.5.0.0 (5.5.7503.3146)
Matrix of nearest neighbors, size: k x samples.D[1]; indices of points in Neighbors matrix.
Searches for k nearest neighbors for every sample in Samples samples.
[ILNumerics Machine Learning Toolbox]
Namespace: ILNumerics.Toolboxes
Assembly: ILNumerics.Toolboxes.MachineLearning (in ILNumerics.Toolboxes.MachineLearning.dll) Version: 5.5.0.0 (5.5.7503.3146)
Syntax
public static RetArray<long> knn( InArray<double> Samples, InArray<double> Neighbors, int k = 10, DistanceMetrics metric = DistanceMetrics.Euclidian_L2, double minkowski_parameter = 2, bool unstable_error = true )
Parameters
- Samples
- Type: ILNumericsInArrayDouble
Samples matrix, samples in columns, the number of rows (dimensionality) must match the number of rows in Neighbors. - Neighbors
- Type: ILNumericsInArrayDouble
Matrix of training samples/ neighbors, this will be searched for matching points, rows: dimensionality, columns: number of points. - k (Optional)
- Type: SystemInt32
[Optional] Number of neighbors to return, k must lay in range: 0 <= k < neighbors.D[1]; default: 1. - metric (Optional)
- Type: ILNumerics.ToolboxesDistanceMetrics
[Optional] Distance metric, one out of the [!:ILNumerics.Toolboxes.MachineLearning.DistanceMetrics] enumeration. Supported are: Euclidian_L2,Manhattan_L1, Minkowski, Cosine, Pearsons and Hamming distances; default: 'Euclidian_L2'. - minkowski_parameter (Optional)
- Type: SystemDouble
[Optional] Exponent for minkowski distance; default: 2. - unstable_error (Optional)
- Type: SystemBoolean
[Optional] For cosine and pearson distances: if some samples lead to numerical instabilities, an exception is generated; default: true.
Return Value
Type: RetArrayInt64Matrix of nearest neighbors, size: k x samples.D[1]; indices of points in Neighbors matrix.
Remarks
[ILNumerics Machine Learning Toolbox]
See Also