ILNumerics Ultimate VS

Optimizationhessian Method

ILNumerics Ultimate VS Documentation
ILNumerics - Technical Application Development
Numerical approximation of the hessian of func at position x through Ridders' method of polynomial extrapolation and a finite differences algorithm

[ILNumerics Optimization Toolbox]

Namespace:  ILNumerics.Toolboxes
Assembly:  ILNumerics.Toolboxes.Optimization (in ILNumerics.Toolboxes.Optimization.dll) Version: 5.5.0.0 (5.5.7503.3146)
Syntax

public static RetArray<double> hessian(
	OptimizationObjectiveFunction<double> func,
	InArray<double> x,
	InArray<double> fx = null
)

Parameters

func
Type: ILNumerics.ToolboxesOptimizationObjectiveFunctionDouble
Scalar function defined from Rn to R
x
Type: ILNumericsInArrayDouble
Vector giving the position of evaluation in Rn
fx (Optional)
Type: ILNumericsInArrayDouble
[optional] Result of evaluating func at x, default: null

Return Value

Type: RetArrayDouble
An array of dimension x.Length X x.Length
Exceptions

ExceptionCondition
ArgumentNullException If x is null
ArgumentOutOfRangeException If f is not defined at x or if f has values in R n, for n>1
Remarks

If one of the input arrays is empty, an empty array will be returned. This is better for C2 functions

[ILNumerics Optimization Toolbox]

Examples

ObjectiveFunction<double> polynom = x => norm(x, 1) + 1;
Array<double> C = Optimization.hessian(polynom, ones<double>(2, 1));
See Also

Reference

Other Resources